(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
Defined Rule Symbols:

minus, quot, app, reverse, shuffle, concat, less_leaves

Defined Pair Symbols:

MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES

Compound Symbols:

c1, c3, c5, c7, c9, c11, c14

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
We considered the (Usable) Rules:

concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(APP(x1, x2)) = 0   
POL(CONCAT(x1, x2)) = [3]   
POL(LESS_LEAVES(x1, x2)) = [4]x1   
POL(MINUS(x1, x2)) = 0   
POL(QUOT(x1, x2)) = 0   
POL(REVERSE(x1)) = 0   
POL(SHUFFLE(x1)) = 0   
POL(add(x1, x2)) = [2]   
POL(app(x1, x2)) = 0   
POL(c1(x1)) = x1   
POL(c11(x1)) = x1   
POL(c14(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(c7(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(concat(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = [2] + x1 + x2   
POL(leaf) = 0   
POL(minus(x1, x2)) = [3] + [2]x2   
POL(nil) = [2]   
POL(reverse(x1)) = 0   
POL(s(x1)) = 0   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
K tuples:

LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
Defined Rule Symbols:

minus, quot, app, reverse, shuffle, concat, less_leaves

Defined Pair Symbols:

MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES

Compound Symbols:

c1, c3, c5, c7, c9, c11, c14

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
We considered the (Usable) Rules:

concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(APP(x1, x2)) = [2]x2   
POL(CONCAT(x1, x2)) = 0   
POL(LESS_LEAVES(x1, x2)) = 0   
POL(MINUS(x1, x2)) = 0   
POL(QUOT(x1, x2)) = x1   
POL(REVERSE(x1)) = 0   
POL(SHUFFLE(x1)) = 0   
POL(add(x1, x2)) = 0   
POL(app(x1, x2)) = [2]   
POL(c1(x1)) = x1   
POL(c11(x1)) = x1   
POL(c14(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(c7(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(concat(x1, x2)) = [4] + [3]x2   
POL(cons(x1, x2)) = 0   
POL(leaf) = 0   
POL(minus(x1, x2)) = x1   
POL(nil) = [3]   
POL(reverse(x1)) = [3]x1   
POL(s(x1)) = [1] + x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
K tuples:

LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
Defined Rule Symbols:

minus, quot, app, reverse, shuffle, concat, less_leaves

Defined Pair Symbols:

MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES

Compound Symbols:

c1, c3, c5, c7, c9, c11, c14

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
We considered the (Usable) Rules:

concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(APP(x1, x2)) = 0   
POL(CONCAT(x1, x2)) = 0   
POL(LESS_LEAVES(x1, x2)) = 0   
POL(MINUS(x1, x2)) = 0   
POL(QUOT(x1, x2)) = 0   
POL(REVERSE(x1)) = 0   
POL(SHUFFLE(x1)) = x1   
POL(add(x1, x2)) = [2] + x2   
POL(app(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c11(x1)) = x1   
POL(c14(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(c7(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(concat(x1, x2)) = [4] + [3]x2   
POL(cons(x1, x2)) = 0   
POL(leaf) = 0   
POL(minus(x1, x2)) = [3]   
POL(nil) = 0   
POL(reverse(x1)) = x1   
POL(s(x1)) = [3]   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
K tuples:

LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
Defined Rule Symbols:

minus, quot, app, reverse, shuffle, concat, less_leaves

Defined Pair Symbols:

MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES

Compound Symbols:

c1, c3, c5, c7, c9, c11, c14

(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
We considered the (Usable) Rules:

concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(APP(x1, x2)) = 0   
POL(CONCAT(x1, x2)) = 0   
POL(LESS_LEAVES(x1, x2)) = 0   
POL(MINUS(x1, x2)) = [1] + x1   
POL(QUOT(x1, x2)) = [2]x12   
POL(REVERSE(x1)) = 0   
POL(SHUFFLE(x1)) = 0   
POL(add(x1, x2)) = 0   
POL(app(x1, x2)) = 0   
POL(c1(x1)) = x1   
POL(c11(x1)) = x1   
POL(c14(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(c7(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(concat(x1, x2)) = 0   
POL(cons(x1, x2)) = 0   
POL(leaf) = 0   
POL(minus(x1, x2)) = [1] + x1   
POL(nil) = 0   
POL(reverse(x1)) = 0   
POL(s(x1)) = [2] + x1   

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:

APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
K tuples:

LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
Defined Rule Symbols:

minus, quot, app, reverse, shuffle, concat, less_leaves

Defined Pair Symbols:

MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES

Compound Symbols:

c1, c3, c5, c7, c9, c11, c14

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
We considered the (Usable) Rules:

concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(APP(x1, x2)) = 0   
POL(CONCAT(x1, x2)) = [3] + x1 + [3]x2   
POL(LESS_LEAVES(x1, x2)) = [2]x1 + x22 + [2]x1·x2   
POL(MINUS(x1, x2)) = 0   
POL(QUOT(x1, x2)) = 0   
POL(REVERSE(x1)) = 0   
POL(SHUFFLE(x1)) = 0   
POL(add(x1, x2)) = 0   
POL(app(x1, x2)) = 0   
POL(c1(x1)) = x1   
POL(c11(x1)) = x1   
POL(c14(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(c7(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(concat(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = [3] + x1 + x2   
POL(leaf) = 0   
POL(minus(x1, x2)) = 0   
POL(nil) = 0   
POL(reverse(x1)) = 0   
POL(s(x1)) = 0   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:

APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
K tuples:

LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
Defined Rule Symbols:

minus, quot, app, reverse, shuffle, concat, less_leaves

Defined Pair Symbols:

MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES

Compound Symbols:

c1, c3, c5, c7, c9, c11, c14

(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
We considered the (Usable) Rules:

concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(APP(x1, x2)) = 0   
POL(CONCAT(x1, x2)) = 0   
POL(LESS_LEAVES(x1, x2)) = 0   
POL(MINUS(x1, x2)) = 0   
POL(QUOT(x1, x2)) = 0   
POL(REVERSE(x1)) = [3] + x1   
POL(SHUFFLE(x1)) = x12   
POL(add(x1, x2)) = [2] + x2   
POL(app(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c11(x1)) = x1   
POL(c14(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(c7(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(concat(x1, x2)) = 0   
POL(cons(x1, x2)) = 0   
POL(leaf) = 0   
POL(minus(x1, x2)) = 0   
POL(nil) = 0   
POL(reverse(x1)) = x1   
POL(s(x1)) = 0   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:

APP(add(z0, z1), z2) → c5(APP(z1, z2))
K tuples:

LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
Defined Rule Symbols:

minus, quot, app, reverse, shuffle, concat, less_leaves

Defined Pair Symbols:

MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES

Compound Symbols:

c1, c3, c5, c7, c9, c11, c14

(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^3))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

APP(add(z0, z1), z2) → c5(APP(z1, z2))
We considered the (Usable) Rules:

concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(APP(x1, x2)) = [1] + x1   
POL(CONCAT(x1, x2)) = 0   
POL(LESS_LEAVES(x1, x2)) = 0   
POL(MINUS(x1, x2)) = 0   
POL(QUOT(x1, x2)) = 0   
POL(REVERSE(x1)) = [1] + x12   
POL(SHUFFLE(x1)) = x13   
POL(add(x1, x2)) = [1] + x2   
POL(app(x1, x2)) = x1 + x2   
POL(c1(x1)) = x1   
POL(c11(x1)) = x1   
POL(c14(x1, x2, x3)) = x1 + x2 + x3   
POL(c3(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(c7(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(concat(x1, x2)) = 0   
POL(cons(x1, x2)) = 0   
POL(leaf) = 0   
POL(minus(x1, x2)) = 0   
POL(nil) = 0   
POL(reverse(x1)) = x1   
POL(s(x1)) = 0   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:

MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:none
K tuples:

LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
Defined Rule Symbols:

minus, quot, app, reverse, shuffle, concat, less_leaves

Defined Pair Symbols:

MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES

Compound Symbols:

c1, c3, c5, c7, c9, c11, c14

(17) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(18) BOUNDS(O(1), O(1))